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Spatial representation of temporal information through spike-timing-dependent plasticity
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We suggest a mechanism based on spike-timing-dependent plaé3TiBP of synapses to store, retrieve
and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-
and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the
so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated
input of a limited number of temporal sequences, the system is able to complete the temporal sequence upon
receiving the input of a fraction of them. This is an example of effective unsupervised learning in a biologically
realistic system. We investigate the dependence of learning success on entrainment time, system size, and
presence of noise. Possible applications include learning of motor sequences, recognition and prediction of
temporal sensory information in the visual as well as the auditory system, and late processing in the olfactory
system of insects.
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[. INTRODUCTION of the synaptic connections between layers allows to repre-
sent or decode temporal information and propagating waves,
Animals are challenged in various ways to learn, produceas known from the thalamo-cortical syst¢&1,22,.
reproduce and predict temporal patterns. For example, nu- (2) The second principle rests on feedback. Through de-
merous motor programs are necessary to interact efficientliayed feedback temporal information can be processed on the
with the environment. One specific manifestation is the vocalevel of individual neurons as well as on the level of larger
motor system of song birds. It has been shown that the termstructures. A prominent example for this are recurrent
poral sequence of syllables in a bird’s song corresponds tmultilayer neural networks which play a role in sequence
temporal sequences of bursts in the neurons of the forebraimemory in the hippocampu3,24.
control system1-3]. These are learned and stored by the (3) The third principle is to transform the temporal infor-
adolescent bird. mation into spatial information. This can occur through the
Temporal codes seem to be used for a variety of othedynamics of a network with asymmetric lateral inhibition
tasks as well. Temporal coding in the retipg is an ex- [25].
ample, as is information transport in the olfactory system of In this paper we demonstrate an alternative mechanism
the locust. In the latter it has been shown that the purelyhat maps the temporal information to the strength of syn-
identity coded information of the receptor neurons is transapses in a network through spike-timing-dependent plasticity
formed into an identity-temporal code inside the antennalSTDP. Similar mechanisms have been suggested for pre-
lobe [5-7]. dictive activity and direction selectivity in the visual system
Whereas there is a long history of research on sequend@6] and learning in the hippocamp(i23,24,27 as well as
learning and recognition in the framework of abstract neuraprediction in hippocampal place fields and route learning in
networks(cf. the relevant chapters in Ref8,9] and refer-  rats[28—3(. In contrast to these earlier works, we focus on
ences therein it is an open question how the learning and questions of learning of several distinct input sequences in
memory of time sequences is accomplished in real biologicabne system and a sparse coding scheme. This learning capa-
neural systems. Three main principles for representing timéility is necessary in order to process the identity-temporal
in neural systems are frequently discussed: code believed to be generated by winnerless competition in
(1) The first makes use of delays and filters. There aresensory systems,31].
various ways of processing temporal information in the den- Synaptic plasticity in the connections among neurons al-
dritic tree[10—13 or through axonal delayld4—20. Other  lows networks to alter the details of their interaction and
examples are multilayer neural networks in which the delaydevelop memories of previous input signals. The details of
the methods by which biological neurons express plasticity
at synapses are not fully understood at the biophysical level,

*Electronic address: tnowotny@ucsd.edu; but many aspects of the phenomena which occur when
URL:http://inls.ucsd.eduf nowotny presynaptic and postsynaptic neurons are jointly activated
"Electronic address: mrabinovich@ucsd.edu are now becoming clear. First of all, it seems well estab-
*Electronic address: hdia@jacobi.ucsd.edu lished that activity at both the presynaptic and the postsyn-
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FIG. 1. Spike-timing-dependent plasticity learning rulkg
=A At/ e V7 for At>0 and Ag=A_At/7_e’V"- for At
<0, A, , A_>0. This form of the learning rule was directly in-
ferred from experimental da{&7].

aptic parts of a neural junction is required for the synaptic: N
strength to change. Arrival of a presynaptic action potentiale
will induce, through normal neurotransmitter release and re-

. : . : FIG. 2. Morphology of the model system. The ovals are artificial
ception by postsynaptic receptors, a postsynaptic elecmc%put neurons producing rectangular spikes of 3 ms duration at

action which generally leads to no change in the couplin% e . . ;
o ecified times. Each is connected by a nonplastic excitatory syn-
strength at that synapse. Depolarization of the postsynaptlagD

b . led witharrival of i pse to one of the neurons in the main “cortéglbtted lineg. The
Cell Dy various meansoupled witharrival of a presynaplic - g ¢jrcles depict the integrate-and-fire neurons of the main cortex.

acti_on potential can lead to changes _in Synap_tic strength in ‘f‘hey are connected all-to-all by spike-timing-dependent-plasticity
variety of experimental protocols. It is quite important thatgnanses shown as solid gray lines. The big full circle on the right
changes in the synaptic strength, which we denote in termgepicts a neuron with slow Calcium dynamics which inhibits all

of a conductivity changelg can be either positive, called neurons in the cortex through the nonplastic synapses shown as
potentiation, or negative, called depression. When the exdashed lines.

pression ofAg is long lasting, several hours or even much
longer after induction, increases gare called long term vitro or cultured preparations, the characteristic LTD time
potentiation or LTP, and decreasesgrare called long term s about two or three times longer than the characteristic LTP
depression or LTD. Good reviews of the current situation ar@jme r, .
found in Refs[32-34. Here we inquire how a network composed of familiar
LTP and LTD can be induced byl) depolarizing the integrate-and-fire neurons can develop preferred spatial pat-
postsynaptic cell to a fixed membrane voltage and presentingrns of connectivity when interacting through synapses that
presynaptic spiking activity at various frequencies, @  update their strength according to the STDP learning rule just
inducing slow(LTD) or rapid (LTP) release of C&" [35], or  given. This rule is a simplification, which applies to our set-
by (3) activating the presynaptic terminal a few tens of mil- ting of spiking neurons, of more general modég8—44
liseconds before activating the postsynaptic cell, leading t@hat indicate howAg(At) behaves under stimulus of arbi-
LTP, or presenting the activation in the other order, leading tQrary presynaptic and postsynaptic wave forms.
LTD [36,37. The transformation of temporal information into synapse
In this paper we study numerically a network composedstrength through STDP maps a temporal sequence of excita-
of integrate-and-fire neurons which are densely coupled withions of neurons to a chain of stronger or weaker synapses
synaptic interactions whose maximal conductances are pegmong these neurons. If the synapses are excitatory, a
mitted to change, in accordance with the observations OBtrengthened chain of synapses facilitates subsequent excita-
closely spaced spike arrival times, to the presynaptic an@ions of the same temporal pattern up to a point where acti-
postsynaptic junctions of the synapse. vation of a few neurons from the temporal sequence allows
The response of a learning synapse to the arrival of ghe system to complete the remaining sequence. The tempo-
presynaptic spike e and a postsynaptic spike Bhtis @ ral sequence thus has been learned by the system. We dem-
function only of At=tp,s—tpe and for At>0, Ag(At) is  onstrate this type of sequence learning in a computer simu-

positive (LTP), and forAt<0, Ag(At) is negative(LTD). lation of a system with integrate-and-fire neurons and Rall-
At type synapses, and investigate the reliability of learning, the
_a 2 o-Aun, storage capacity in terms of the number of stored sequences,
AgAD=A, T, € for At>0, the scaling of both with system size and sequence length, and
the robustness against different types of noise.
At
— QAT
AglAD=A- T_ € for At<0, D Il. MODEL SYSTEM

whereA, , A_, 7., andr_ are positive constantsee Fig. A. Components and connections

1). Synaptic plasticity of this type is often referred to as To explore the learning principle, we simulated a network
spike-timing-dependent plasticity. For many mammalian with the topology shown in Fig. 2. In this networky
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' I ' I inhibitory neuron is an integrate-and-fire neuron governed by

40 Eq (2) Wlth C: 10 nF, gleak:O-Ol /.LS, Vleak: _60 mV,
‘ V= —40 mV, V=50, andtse=5 ms. In contrast to the
memory neurons this neuron is reset to its resting potential
{ V\eak after each firing. Then the membrane potential is fixed
t0 Vieak fOr tierrace= 10 ms until normal integration resumes.
The inhibitory neuron was implemented as a resetting
integrate-and-fire neuron because it has a very weak leak
current allowing integration over long time windows. This
weak leak current would cause very unnatural broad spikes
in a nonresetting neuron. A typical voltage trace is shown in
the lowest panel of Fig. 3.

Our model of the synapses comes from Réb,46 and
now is a standard model for simplified synaptic dynamics
[47]. In particular, we use

o
T T T T T 7
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13300 13400 13500 13600 I synapse ~ JsynI(D)[ Vpos(t) = Vsynl, ()

time t [ms] whereg(t) satisfies
FIG. 3. Typical piece of a training session. The rectangular df(t) 1
spikes in the upper panel are the input signal spaced by 10 ms in =[OV t) — Vi) —F(1)]
this example. The traces in the middle panel are the integrate-and- dt syn pr '
fire memory neurons. The slow spike train in the bottom panel
belongs to the globally inhibitory neuron. Note the instantaneous dg(t)
onset of the spikes in the integrate-and-fire neurons and how the T T—[f(t)—g(t)], (4)
inhibitory neuron segments the input into pieces of six spikes each. syn

nd Vgn=0 mV, Vy=—20 mV, 75,,=15 ms, V(1) and
pos(t) are the pre and postsynaptic membrane potentials,
ovals in Fig. 2 and g, is the strength of the synaps®(u)=0,u<0 and

© ®(u)=1,u>0 is the usual Heaviside function. Typical exci-

The input neurons generate rectangular spikes of 3 m , .
duration at times determined by externally chosen input Seff’atory postsynaptic potentia=PSP$ generated by these

uences. Each of these spikes is sufficient to trigger exactly” oroc> ¢an be seen in the middle panel of Fig. 3.
d o © SP : 9ge Y The synaptic strength of the internal synapses is adjusted
one spike in the receiving neurdsee Fig. 3. The input . . o g
, . according to the synaptic plasticity rule shown in in Fig. 1
sequences are chosen such that only one input neuron Sp'kv%ﬁenever 2 spike in their presvnantic and postsvnaptic Neu-
at any given time and the time between input spikes was P presynap hostsynap

fixed in the normal test setup. In Sec. IV these input neurongo 2¢CU"s: In itself, this rule may lead to "run-away” be-
. P " put ne Ravior of the synaptic strengths. While this may be avoided
are replaced by Poisson neurons with random spike times.

) Uy in the dynamical model of synaptic plasticii$4], we need
Th_e me_mbrane voltage of the mtegrgte_anc_i fire NEUrON% address this within the simpler model used here. We do so
used in this study for subthreshold activity is given by X
by two approaches:

dv (1) We add a long term, slow decay to the synaptic plas-
Ca:_gleal{v(t)_vleak]+Isynapsget)v (2) ticity which would, all other factors being absent, bring it
back to a nominal allowed level a long time after alteration
by our rule. This we implement with

integrate-and-fire neurons are connected all-to-all while eac
neuron also receives input from one “input neura(filled

where C=0.2 nF, Qja=0.3 S, and V,,u=—60 mV.
Whenever membrane potentM(t) reaches/y,= —40 mV,
it is set to firing voltageV,,,,=50 mV, kept at that voltage
for tse=2 ms and then released into the normal integration
state. The neuron is subsequently refractory Qe ct _ o .
—40 ms before another firing event is allowed. During the"WN€ré Joaw is the initial value of the unmodified synapse
refractory period the neurons integrate normally but the tranStréngth. So, after potentiation or depression according to the
sition of the firing threshold has no effect. In the implemen-Synaptic plasticity rule, the synaptic strength is allowed to
tation of integrate-and-fire neurons used in this work, noslowly de_cay back toits original value. The time scale of this
crossing of the firing threshold from below is necessary tgexponential decay is set by,=200 s. o
elicit a spike in a super-threshold neuron after the refractor){ (2) Graw is an intermediate variable which is then trans-
period. See Fig. 3, middle panel, for typical spike forms. ated into synaptic strength, via a sigmoid saturation rule:

A neuron connected to all neurons in the netw@ekge 1
filled circle in Fig. 2 provides global inhibition whenever _ + _
the activity in the network exceeds a certain threshold. The Goyn= gmaxz[tanf'(gsbpe(graw 9u2))+ 11, ©®

dg 1
drtaW: - ?g[graMt)_gO,rava (5
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whereg,a is the largest allowed value for the synaptic con-=10 ms, 15 ms, or 20 ms. The learning rule has to accom-
ductivity, andg,, sets the threshold where saturation to thismodate all these input speeds and possibly values in be-
value is implemented. All data shown in this work was ob-tween. In particular, we chose her&,=0.3uS, A_
tained with 9ma=2.8 uS, 01,=1/20max, anNd geope =2/3A,, 7, =16 ms,7_=3/2r,, and7y=200 s.

=1/g945,. In addition, the globally inhibitory neuron tends to  After the training phase the network was presented with
curb the tendency of the network to saturate its synaptipieces of the training patterns. We presented all possible or-
strengths. dered pieces of one to four input spikes and recorded the

These features of our model reflect our lack of knowledgenumber and identity of spiking neurons in the network in
of the biophysical factors setting the synaptic strength, in theesponse to this input. Perfect learning of the patterns would
first place, and our equivalent lack of knowledge of howcorrespond to obtaining a spike from each of the network
these factors bound the eventual rise or fall of synaptimeurons in a given pattern when presenting a piece of two or
strength. Our assumption in using these rules is that the aghree inputs from that pattern to the input neurons. Further-
tual mechanisms, while surely more complicated in detailmore, all other network neurons should remain inactive if the
will provide the same effective bounding feature. pattern is reproduced exactly.

The complete system is realized intG- using an order As a result of incomplete or ineffective learning two types
6(5) variable time step Runge-Kutta algorithj@8]. The er-  of errors can occurfl) Neurons that should be excited within
ror goal per time step was 10 in all simulations. A run of  the given pattern do not spike ¢2) neurons that are not
100 simulated seconds of a system with 50 neurons takespposed to spike do so. Due to overlap of input patterns, the
about three hours on an Athlon 1.4 GHz processor. learning efficiency is a function of the number of learned

This model system mimics the situation of a highly con-patterns as well as the size of the network. Therefore, esti-
nected piece of cortex receiving input from the neural pemating the expected amount of overlaps in the randomly
riphery. Our input can be interpreted in two ways. It might bechosen input sequences provides information about the opti-
a single strong EPSP received from an upstream neurompally achievable system performance.
which is strong enough to trigger a spike. It could also be The probability distribution for numbey;;, of ordered
interpreted as the coincidence of several weaker EPSPs rptuples occurring in at leasbout of r patterns witrk neurons
ceived from various presynaptic neurons being sufficient teeach for a system with a total number mieurons can be
cause a spike. calculated in the following way. First consider a given or-
deredj-tuple and a given pattern witk neurons. The se-
quence is presented continuously and, therefore, needs to be
interpreted as cyclically closed. Thus, there lapossibilities

To test the ability of this network to stordearn and  to position the tuple in the sequendstarting at neuron 1 to
retrieve(remembertemporal-identity patterns, it was trained starting at neurok) and (W —j)!/[n—j—(k—j)]! possibili-
with sets of randomly chosen sequences of inputs. Thesées to choose the remaining neurons in the sequence. The
sequences were chosen without repetition of neurons withitotal number of sequences of lendtlis n!/(n—k)!. There-
the sequence. Note that this implies a minimal time of thefore, probabilityp; to have a given ordergetuple in a given
order of the length of the sequence between spikes in eagpattern withk active neurons is given by
neuron. For this reason, the choice of resetting or nonreset- ) ]
ting neurons is not important as the integration times of the _:k(”_l)! / n! :k(”_J)! @
neurons are small compared to the total length of the se- " (n—k)! (n—k)! n'
guences and the time scale of the global inhibition. Our
choice of nonresetting integrate-and-fire neurons was mainlif r sequences of lengtk are chosen independently, the
guided by the more natural spike form of the nonresettingorobability to have any given ordergduple of neurons in
variety. or more of ther sequences is given by the binomial distri-

The sequences were presented continuously, with the firgtution with parameters andp; ,
neuron of the sequence following the last with the same time
delay as the neurons within the sequence. The global inhibi- i s s
tion of the system partitions this continuous input of spikes pJ:SE:i S (P)>(1=pp" > ®
into pieces of about 6—8 spikes at a time. Between these
input windows the whole system is inhibited and thus resety, 4o04 approximation one can assume the events of one

This mechanism can be seen in the example training sessicgﬁ\,en j-tuple being ini or more sequences and another
shown in Fig. 3. Note that the details of the global inhibition ;

i X o Ij-tuple being ini or more sequences to be independent. In
mechanism do not ma_tter as long as the. system is efficiently,;o approximation, the probability distribution fof ., is
reset after an appropriate amount of activity.

. i ) ) again a binomial distribution with parameten$/(n—j)!
Learning rateA, and time scale of forgettingy in the andp'

_ " ; ndpj,
synaptic plasticity learning rule were chosen such that learn- ]
ing reaches a steady state after a learning time of about
160Q\t, whereAt is the fixed interspike interval between — | iy Y
input activations. For an example of the learning protocol see  P(Yijn=1~| (M=D! | (p))'(1—pp/("=DI=1 (9)
Fig. 3. In all studies described belowt was chosen aat I

B. Operations and activity

r

n!
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F The comparison of expectation valuEX; 3194, With nu-

100 ’\"

merically observed relative numbers of occurrence in Fig. 4
shows again a perfect match.

¥ The model parameters were chosen such that two to three
L spiking predecessors of a given neuron in a trained sequence
", 141 ; are sufficient to excite that neuron. The learning performance

number of tupels X, Y
=
“".‘r’

\\ ' N — is therefore poor as long as there is a significant amount of
\ i ordered two-tuple overlaps in the patterns. Rule of thumb

\ ] EY,2kn<<0.5 for the expectation value of;, provides an
\ \\ | estimate for number of pattern of lengthk that can be

_— . successfully stored in a system ofneurons. Another esti-
\”‘*\.\_ ] mate for the number of learnable sequences is provided by
\..N i rule of thumbEX55,,<0.5, i.e., the overlaps in input se-

20

quences should have negligible impact on the learning if
there is no significant amount aihorderedthree-tuples oc-
curring in more than one pattern.

40 60 80 100
system size n

FIG. 4. Comparison of the expectation values 165 104, Typically, capacity estimates are given in the limit of sys-
(lower line) and X, 3106, (upper ling obtained from Eqs(9) and ~ tem sizen tending to infinity. As shown in the Appendix, the
(12) to the normalized number of occurrences of unordered threeleading term of the Taylor expansion p}f with respect tq;
tuples(gray dots and ordered two-tuple@lack dotg in more than  aroundp;=0 is

two sequences in 100 000 randomly generated sets of ten sequences
of length 8. The inlay shows a closeup of the data on ordered tuples i r i i+1
in the region with system size around 50 neurons, which is the size Pj= i (pj) +O((pj) )
used in most numerical simulations.
such that asymptotic equation
Figure 4 shows a comparison of the expectation value for
EY; 5108, Obtained from this approximate distribution com- i !
pared to the relative humber of occurrences in 100 000 ran- lim EYijnn =€
domly generated sets of ten sequences of length 8. The lack e
of a significant discrepancy demonstrates the precision of thg, 45 1
estimate.
The probability distribution for numbeX;;, of unor- n! (r)( (n—j)!)‘
=€

dered jtuples occurring in at leastout of r patterns withk lim n=p1 i o

neurons each for a system with a total numben ofeurons n—e ' '

can be calculated pretty much in the same way. Now, prob- i

ability ij to have a given unordergeuple in a given pattern o lim _r_|kin—i(i—1): €
il

with k active neurons is n—oo

n—j n such that capacity(n,k, ) is asymptotically
efl /[ w
k=i k r(n,k,e)=%(i!e)”ni(i*l)”.

Then, probabilityp; to have any given unordergetuple of
neurons in or more ofr independently chosen patterns is the

binomial distribution with parametersand f)j , |
lim EXijrkn =€
n—oo

In the same way,

r

n r . -
p}=2 (S)(pj)s(l_pj)rs- (11)

& leads to

(k—j)!
k!

Again taking the approximation of assuming independence r(n,k,e)=
for the occurrence of distinct tuples, this leads once more to

(i!j!e)lﬁnj(i_l)/i.

(13

(14)

(15

(16)

17

(18

(19

a binomial distribution, now with parameter®) (andp} ,

The dashed lines in Fig. 5 are some examples for the first
rule of thumbEY,,,=3 and the thin solid lines are the
corresponding values af(n,k,3). The estimates based on

: rule EX,3¢n= 73 are shown as dash-dotted lines in Fig. 5 and

. . ~. N
P(Xijrkn=1)~ (J) (pp'(1—-pp ). (12 the corresponding values of the asymptotically correct

I r(n,k,%) are again shown as thin solid lines. The correspon-
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FIG. 5. Estimate for the maximum storage capacity of the sys-
tem. The dashed lines divide the plane into two regions with
EY,.2, k50> 0.5 (abovg andEY, 5,  50<0.5 (below) for k=8 (top-
most line, 10 (middle ling, and 12(lowest ling, respectively. The
thin solid lines are the corresponding estimates for the asymptoti- ¢ X o
cally correct vaIues(SOk,%). The dash-dotted lines analogously
mark the boundaries between regions véiK, 5, \ 50> 0.5 (above FIG. 6. Simple example of a learned identity-temporal pattern.
andEX; 3y k,50< 0.5 (below). Again the thin lines are the asymptoti- The neurons at the corners of the octagon have been repeatedly
cally correct estimates(50k,3) excited in clockwise order. The width and grayscale of the connec-

tions encodes the strength of the corresponding synapse and the
dence between the exact evaluation of the casmallcircle at the end shows its direction. As one can clearly see,
pacity estimators and the asymptotically correct capacityhe temporal pattern is transformed into an ordered spatial pattern

functions r(n,k,e) and r(n,k,e) is noteworthy. Relative by synaptic plasticity.

capacities r' (k) :=kr(n,k,)/n1~ D= (i1e)™ and r’(k) A typical example for a network of 50 neurons trained
s=kr(n,k,e)/ni—Di=[(k—j)1/(k—1)!](i'j'e)" behave with five sequences of length 8 is shown in Figs. 8 and 9.
quite differently. Whereas the former is constant with respecirhere are several important features to point out. First of all,
to k the latter is falling ink. So, depending on whether a the recall never comprises all eight neurons of the trained
system is more sensitive to ordered tuple overlaps or to ursequence but only up to seven active neurons. This is, how-
ordered tuple overlaps, the relative capacity is constant ogver, not a universal feature but rather a characteristic of the
falling in k. In particular, for systems sensitive to unorderedglobal inhibition circuit shutting down the system after ca. 7
tuple overlaps, it will be beneficial to store many short se-spike occurrenceésee Fig. 8 Furthermore, note that the

guences instead of a few long ones. recall of the sequences speeds up toward the end of the se-
quence. This is partly due to the fact that the integrate-and-
IIl. RESULTS fire neurons used here do not have a finite rise time for their

spikes, which allows them to instantaneously affect their

The synaptic plasticity allows one to store time sequencepostsynaptic neurons.
of excitation of neurons into patterns of strengthened syn- In a network with more realistic neurons one would ex-
apses as intended. A simple example is shown in Fig. 6 fopect that there is a lower limit on the speed with which
one input pattern. For randomly chosen input sequences, tteequences can be recalled in the system. Preliminary studies
patterns are structured in the same way but are not so easy With realistic Hodgkin-Huxley-type neurons show this effect
detect with the human eye. During training the synapses bg49]. It has clear advantages for maintaining the correct order
tween consecutively active neurons are strengthened if pointf recall in the system. The microscopic internal dynamics of
ing in the direction of the activation order or weakened ifthe neurons thus seems to be non-negligible for the macro-
connecting the neurons in the wrong direction. An examplescopic performance of the system. This will be discussed in
of the development of the average synaptic strength of symmore detail in forthcoming work.
apses between neurons of one out of five trained sequences isThe quality of recall of sequences depends very much on
shown in Fig. 7. Note that the time course and final strengthhe sequence and the piece presented as a cue. This is, how-
of the synapses depends on the speed with which the sever, also no surprise because sequence overlaps occur at
quences are entrained due to the nonconstant learning curgertain neurons in the sequence and if these are used as a
(2). cue, the performance is worse than when other neurons are

The ability to store more than one pattern was tested ised. In Fig. 9 one can see how some sequences are repro-
various setups. We mainly varied choice, number, and lengtbuced very well and are error-free while others lead to acti-
of input sequences and the speed of entrainment. vation of quite a few incorrect neurons.
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1+ m{{{}} i mﬁﬁﬁmﬁwﬂ{mﬂﬂﬂ FIG. 8. Typical recall episodes. The system of 50 neurons was
e T trained with two (left pane) or five (right panel sequences for
0 P R T T R R T Eowoa o | 160Q\t per sequence, wherkt=10 ms. It then receives a cue of
0 50000 100000 150000 two spikes from one of the trained sequences and autonomously
time t [ms] completes the sequence until stopped by the globally inhibitory

neuron. Note that although the recall of the identity and order of the
FIG. 7. Development of synaptic strength during training. Theneurons is perfect in both cases, the exact timing is lost. In general,
network of 50 neurons was trained with five sequences of length ®ne sees a tendency of speedup to the end of the recalled sequence.
in sequential order. The topmost panel shows the data for sequenceébis can have the effect of destroying the correct order of recall in
entrained with interspike intervalt=10 ms, the middle withAt the later sequence if the global inhibition is not present.
=15 ms, and the lowest witht=20 ms. Each sequence was pre-

sented for 8Qt at a time. The data shown are average synapticsequences could be entrained as well. However, this would
strengths of synapses between the neurons of one of the trainedcq |ead to decreased performance for faster sequences.
sequences. The topmost points are the average strengths of all syn- 14 tast for the dependence of learning success on the

apses between the neurons and their direct successors in the Tghgth of presented sequences we entrained a 50 neuron sys-
quence, the middle are the corresponding strengths of synapses l{g

tween neurons who are next nearest neighbors in the sequen m with sets of five sequences of length 6 o0 9. Figure 11

c . . o
under consideration, and the lower points correspond to strengths g?uow_s_the performance of the system. On first sight it is
synapses between neurons with distance 3 in the sequence. TRYTPrISINg that the system performs worse for shorter se-
lowest data points are the strengths between the neurons of the

sequence as described above hgéinstthe order of activation in L ' UL B L

(2]
the trained sequence. The sharp rises in synaptic strength correg 8

spond to training of the particular sequence shown here and th@ 6_ ﬂ[ | ﬁ;._
falling flanks correspond to the decay while other patterns areo | T %
trained. =

oy | ‘
3 ok
ﬁ; llr T T

I

Y

To test for the capacity of the system systematically, we g 2 N
trained a network of 50 neurons with two up to ten sequencesg | T‘
of length 8. For each number of sequences five independer= )
sets of randomly chosen sequences were tested. Figure 1 0
shows the average response of the trained systems to piect. _ label of the trained sequence
of two inputs taken from the learned sequences. The aver-
ages are over all possible subsequences and all five inp
sequence sets for each data point. This experiment was do%%

with three different input speeds, i.e., the input was presente&]osen sets of five input sequences labeled with numbers 0 to 4 in

with fixed interspike intervals of lengtht=10 ms, 15 ms, each set. The filled symbols show the average number of spiking

and.20 ms. As one can see in Fig. 10 th? performance dr"?_‘1'eurons within a tested sequence and the open symbols show erro-
matically decreases for the slowest entrainment speed. Thigously spiking neurons. The test cue were fractions of length 2

is due to the fact that the fixed width of the learning window from the trained sequences. The circles were obtained with a train-
in Eq. (1) leads to weaker synapses for all the synapses ithg speed ofAt=10 ms, the squares witht=15 ms, and the tri-

this case as spikes are separated further in (8ae last row  angles withAt=20 ms. Note that the results depend on the struc-
of Fig. 7). The minimum and maximum possible speed of theture of the input set. Whereas in the left case all sequences have
entrainment are thus directly determined by the learning winsome overlap, in the right case sequence 0 and sequence 3 are
dow. If one chooses a larger learning window the slowerpretty much disjoint from the others.

of spiki
N
0e—

FIG. 9. Examples of learning in a 50 neuron network after
O\t sequential training with five input sequences of length 8.
e left and the right panels show results for two independently
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FIG. 10. Scaling of storage quality with the number of input  FIG. 11. Scaling of storage quality with the length of input
sequences. A system with 50 neurons was trained with a varyingequences. A system with 50 neurons was trained with sets of five
number of input sequences of length 8. The figure shows the renput sequences of different lengths. The figure shows the response
sponse after a total of 16 training for each input sequence. The after a total of 16 s training for each input sequence. The filled
filled symbols show the average number of responding neuronsymbols show the average number of responding neurons within a
within a tested sequence and the open symbols show the number t&fsted sequence and the open symbols the number of incorrectly
incorrectly responding neurons. The test cues were pieces of twesponding neurons. The test cues were pieces of two inputs from
inputs from the trained sequences. The circles were obtained witthe trained sequences. The circles were obtained with sequences of
sequences trained with interspike intervAlls=10 ms, the squares length 6, the squares with length 7, the triangles with length 8, and
with At=15 ms, and the triangles witht=20 ms. All data points  the diamonds with length 9. All data points are averages of trials
are averages of trials with five independently chosen sets of inpuwith five independently chosen sets of input sequences.
sequences.

) by its mean 0 mV and its variance for which several values
quences. Naively, one would expect a better performancgatyeen 0.2 mv and 1.0 mV were tested.
because overlaps are less likely. Indeed, one can really see 14 simulate unreliable input we implemented Poisson in-

that the number of erroneous spikes is smaller. On the Otheﬂut neurons. These neurons produce rectangular spikes of

hand, the pumber of correct spikes is a!so conside_rabl)évidth tpie=3 Ms as before but the time of spiking is sto-
smaller. This is due to the fact that the spikes preceding a

given spike in a sequence are also succeeding it because ¥ ,—F——F———FT—F—T————T—T—
the periodic presentation of the sequeng=®, e.g., Fig.)3 & o —
Synapses between the corresponding neurons are therefos 2 m"mu*’m“ ! i g
enhanced as well as depressed. For shorter sequences the I£ L it f
presentation of the sequence is closer and therefore the de§> i Iﬁiiﬂmﬁiﬁ““’ ]
pression effe_ct stronger, leading to lesser oyerall synapsi O e s
strength(cf. Fig. 12. Th_|s creates the fewer retrleved_ spikes g SR e

for shorter sequences in Fig. 11. To some extent this can b ;

seen as an artifact because longer learning time or slightly time t [ms]

larger learning increment& . could diminish this effect. On
the other hand, this might have negative effects on the pe
formance of the system in other parameter regions.

FIG. 12. Development of synaptic strength during training of a
rs'equence of length 6 with speéd =10 ms. The network of 50
neurons was trained with five sequences of length 6 in sequential
order. Each sequence was presented faxt8ét a time. The data
IV. ROBUSTNESS shown are average synaptic strengths of synapses between the neu-

Biological neural svstems are subiect to various externarlons of one of the trained sequences. The topmost points are the
9 y J verage strengths of all synapses between the neurons and their

and internal noise sources. Starting from internal thermaﬁireet successors in the sequence, the middle are the corresponding

_r10|se Wlthl.n the system, this ranges over noisy or _unre“ablpstrengths of synapses between neurons that are next nearest neigh-
input and influences from other parts of the organism up Qg jn the sequence under consideration, and the lower points cor-

external glectromagnenc fields. To test the effect of noise ORespond to strengths of synapses between neurons with distance 3
the learning success of our model systems we focused QR the sequence. Note how the synaptic strength for these synapses
two types of noise. We implemented a Gaussian white noisg suppressed because a spike, being the third predecessor of a given
in the membrane potential of the integrate-and-fire neurongpike, is also the third successor of this spike due to cyclic training.
and we implemented unreliable input. The lowest data points are the strengths between the neurons of the

The internal white noise was added to the membrane pasequence as described above againstthe order of activation in
tential of each neuron independently. It is fully characterizedhe trained sequence.
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FIG. 13. Impact of Gaussian white noise in the membrane po- r|G. 14. Impact of noisy input on the learning performance. The
tential. The data points are the number of spiking neurons within, ot sequences were provided by stochastic Poisson neurons, as
tested sequences after 2400raining atAt=10 ms(full symbol9  yegcribed in the text. The data points are the number of spiking

and the number of erroneously spiking neurdopen symbols  hoyrons within tested sequences after 240Graining at At

The small symbols were obtained when the noise was only present 1 ms(full symbols and the number of erroneously spiking neu-
during learning and the large ones when noise was always presenbs (open symbols The small symbols were obtained when the
The circles correspond to a cue of two inputs in testing and th&ychasticity of the input was only present during learing and the
squares to a cue of three inputs. large ones when input was always stochastic. The circles corre-

) ) ) ) ) _spond to a cue of two inputs in testing and the squares to a cue of
chastic. The spike times are determined by the Poisson dighree inputs.

tribution:
ratio. This indicates that mainly, missing input spikes during
N _M(M)k the training and especially during testing are responsible for
P(Nspie=k) =€ Tk (20) the decreased spikes in the response. It is to be expected that

longer training can diminish these effects even more. Like in
whereng is the number of spikes occurring in an interval the case of noise in the membrane potential, the learning
of lengtht and parametex is the mean firing rate. For small stage is not affected as much b_y the noisy input as the recall.
t this can be approximated bR (Nepie=1)=At, P(Ngpice Agam the same argument applies; the eﬁects_ of the gtochas—
=0)=1-\t, and P(ng=k)=0 for k>1. This is the ticity of the input spikes is averaged out over time during the

[ spike . . . . ..

probability distribution we use to decide whether a neurordnultiple repetitions in the training phase.
fires within a time step of the Runge-Kutta algorithm used.

After firing, the neurons are refractory fdfqac—=10 ms. V. DISCUSSION
The training protocol is that the mean firing rate of the first
neurons is switched from 0 to some activity leve), for It has been demonstrated that STDP allows the transfor-

2At, the next neuron is switched on aftat for also 2At, mation of temporal information into spatial information, pro-
and so on. Different reliability of the input can be adjustedViding an efficient mechanism for storing temporal se-
by parameten . quences Wh_lch does not require a sophlstlcate_d network
Figures 13 and 14 show the impact of the two types of©P0logy. It is, however, not obvious how muantify the
noise on the learning performance. Figure 13 shows the efforage capacity of the system from the observed recall per-
fect of additive white noise at the membrane potential in thgormance for different numbers of stored sequences. Taking
learning stage and in both learning and recalling. As menthe heuristic rule that storage is ;uccgssful if there are on
tioned, the standard deviation of the noise was chosen béVerage one or fewer incorrect spikes in recall, the capacity
tween 0.3 mV and 1.5 mV. The system seems to be more dif @ System of 50 neurons is about 5-6 sequerses Fig.
less unaffected by noise of this magnitude. As expected, th?- The capacity estimates fon=50 and k=8 are
learning is even less sensitive to noise than the recalling duk(8,503)~6.3 andr(8,503)~2.6. The storage capacity of
to the fact that the effect of the temporally uncorrelated noiseéhe system therefore seems to be mainly limited by the sta-
on the synaptic strength is averaged out over time. tistical properties of the input, i.e., the overlap probabilities
Figure 14 shows the learning success if the input neuronfr randomly chosen input sequences. The biologically found
fire stochastically during learning only and during learningSTDP learning rule obviously does not imply severe restric-
and recall, as described above. Paramatgrwas varied tions on the ability to learn sequences but, on the contrary,
from 60 Hz to 160 Hz. The stochastic firing of the input seems to be very well suited for this task. There are indica-
neurons seem to only affect the overall number of spikestions that the learning mechanism is even more reliable with
i.e., correct spikes as well as incorrect ones but not theibiologically more realistic conductance based model neurons
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that have nontrivial intrinsic dynamics which to some extent Whereas the direct bound through a sigmoid filtering
prevents the speedup in recall, already discussed above. function might capture some aspects of the behavior of real
The successful storage of arbitrary input sequences, hovsynapses, the decay of synaptic strength necessary to achieve
ever, crucially depends on the existence of the corresponding realistic dynamical steady state is clearly too fast to be
synapses, making the weak all-to-all connections in the infealistic. The system forgets much too fast if it is not con-
vestigated system a necessary requirement. For real biolodginuously stimulated with appropriate input.
cal systems, the global all-to-all connections are an approxi- Alternative solutions to the saturation problem include
mation of the real connectivity and divergence andcompetition based mechanisms suggested by recent findings
redundancy of the input. If the density of connections and thef interactions of various kinds between neighboring syn-
number of neurons each input excites is high enough, pairapses on a dendritic tr¢&2] and learning rules that depend
of connected neurons being excited by successive inputs apn the synaptic strength itself, e.g., multiplicative learning
pear on a statistical basis. Preliminary results for the knowmules.
connectivity in the olfactory system of locust support this The system is reasonably robust against noise. It is note-
idea. It will be discussed more thoroughly in forthcoming worthy that it is not very sensitive to internal high-frequency
work [50]. noise. In the range of noise applied in our trials, the recall
The global inhibition is not so crucial in this study. It can barely depended on the level of noisee Fig. 13 Whether
be realized even more realistically by local interneurons acthis is an effect of the integrate-and-fire neuron model used
tivated by the average activity of the neighboring principalhere is beyond the scope of this work. The tolerance to bio-
neurons. As the role of the inhibition in this system is just tologically more relevant noise in the spike timing of the input
control the activity of a highly excitable network and not to is also rather impressive, taking into account thai,
organize precise synchronous firing or any other sophisti=60 Hz corresponds to a total firing probability of only 36%
cated function, it does not really matter how well coordi- for each of the input neurons within their activity window of
nated this inhibition is throughout the system. Especially, if20 ms. Nevertheless, the system still was able to store at
the excitatory connections cease to be all-to-all in a mordeast parts of the presented sequences at this high noise level.
realistic setup the inhibitory circuit can easily be local as
well. On the_ o'gher hand the example of th_e _chust, where a ACKNOWLEDGMENTS
strong, periodic, global feed-forward inhibition onto the
Mushroom Body is provided through synchronized Lateral We thank Walter Senn for numerous helpful remarks and
Horn interneurons, shows that global inhibition is not necessuggestions. This work was partially supported by the U.S.
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strength for additive learning rules is another importantDE-FG03-90ER14138 and DE-FG03-96ER14592, by grants
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aptic strength was directly bounded by use of the sigmoidDffice, DAAD19-01-1-0026, by a grant from the Office of
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to the additive learning rule, a techniqgue commonly used byational Institutes of Health, NIH RO1 NS40110-01A2.
biologists. On the other hand the steady decay of synaptic

;trength and the continyous stimulation of the network py the APPENDIX: TAYLOR EXPANSION OF pl
inputs lead to a dynamical steady state, thereby bounding the
synaptic strength dynamically. We first need to prove identity

n

min{s.n} (r) sl (r—s)! (n

r
S(1 _y) —S— _ n—kys—krq _ y\r—s—(n—k)
dx”(5>x (1=%) k=max{n+s—r,0} \S (S_k)! (r—s—(n—k))! k)( b X (1) . (Al)

The proof is by induction. Leh=0. Then the equation reduces to

(I‘) S(1 r—s_(r)s'l (I’-S)!(O) 1051 r-s A2
A== o (ZDO(L=x)"", (A2)

sl (r—s)!

which is clearly true. Assuming the validity of EGA1) for n we can calculate
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d"tt (r d e r\ s (r—s)! n o
r=s— __ 1 \n—kys— _y\r—s—(n—k)
dx" 1 s) (1) dx(k max{%s rO}(S) (5—K)! (r—s—(n—k))!(k)( DT (LX) (A3)

min{s.n} r s! (r—s)! n
_ n—kys—k— _ yv\r—-s—(n—k)
( )(s—k—l)! (r—s—(n—k))!(k)( DY) (A4)

k=maxn+s—r,0}

min{s.n} (r) s! (r—s)!
(

* s k) (r—s—(nt1—K)!

(E)(_l)n+1kxsk(l_x)rs(n+1k)_ (A5)

k=maxn+s—r,0}

n+1

Shifting the index in the first sum by one, using the well known identiiyH(," ;)= ("
1=("t") one obtains Eq(Al) for n+1, which completes the proof.
The Taylor expansion f0|nJ is then straightforward:

) and obvious identities such as

Z( HER i (A6)
i E ( mints.n} (r) s! (r—s)! (n) _— e (e k)) ()"
1- — A7
2 20 e o ] 5=kt rs=m—tyr 1|V PTATRY A
J
|
For all k<s the nth derivative contains a nonzero power For anyn<i—1 the inner sum is
of p; and is thus=0 atp;=0. Furthermore, it>n then all
k are less thers and therefore, the whole sum ovkris r
empty. We end up with ( ) (p)" 2 ( )( 1)n- sls_(n>(pj)n(1_1)n:0_
o min{i—1,n} S'(I’-S)' -~ S(p])n (AlO)
-2 2> — <— )
n=1 s=0 (r n)- i i i
(A8) Therefore, the leading term of the Taylor expansiorppfs
o min{i—1,n} n r
== 2 (n)(s)<—1>“(p,->”. (A9) p;=(i)<pj>'+0«pj>'+1). (A11)
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