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Spatial representation of temporal information through spike-timing-dependent plasticity
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We suggest a mechanism based on spike-timing-dependent plasticity~STDP! of synapses to store, retrieve
and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-
and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the
so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated
input of a limited number of temporal sequences, the system is able to complete the temporal sequence upon
receiving the input of a fraction of them. This is an example of effective unsupervised learning in a biologically
realistic system. We investigate the dependence of learning success on entrainment time, system size, and
presence of noise. Possible applications include learning of motor sequences, recognition and prediction of
temporal sensory information in the visual as well as the auditory system, and late processing in the olfactory
system of insects.
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I. INTRODUCTION

Animals are challenged in various ways to learn, produ
reproduce and predict temporal patterns. For example,
merous motor programs are necessary to interact efficie
with the environment. One specific manifestation is the vo
motor system of song birds. It has been shown that the t
poral sequence of syllables in a bird’s song correspond
temporal sequences of bursts in the neurons of the foreb
control system@1–3#. These are learned and stored by t
adolescent bird.

Temporal codes seem to be used for a variety of ot
tasks as well. Temporal coding in the retina@4# is an ex-
ample, as is information transport in the olfactory system
the locust. In the latter it has been shown that the pur
identity coded information of the receptor neurons is tra
formed into an identity-temporal code inside the anten
lobe @5–7#.

Whereas there is a long history of research on seque
learning and recognition in the framework of abstract neu
networks~cf. the relevant chapters in Refs.@8,9# and refer-
ences therein!, it is an open question how the learning a
memory of time sequences is accomplished in real biolog
neural systems. Three main principles for representing t
in neural systems are frequently discussed:

~1! The first makes use of delays and filters. There
various ways of processing temporal information in the d
dritic tree @10–13# or through axonal delays@14–20#. Other
examples are multilayer neural networks in which the de
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of the synaptic connections between layers allows to rep
sent or decode temporal information and propagating wa
as known from the thalamo-cortical system@21,22#.

~2! The second principle rests on feedback. Through
layed feedback temporal information can be processed on
level of individual neurons as well as on the level of larg
structures. A prominent example for this are recurre
multilayer neural networks which play a role in sequen
memory in the hippocampus@23,24#.

~3! The third principle is to transform the temporal info
mation into spatial information. This can occur through t
dynamics of a network with asymmetric lateral inhibitio
@25#.

In this paper we demonstrate an alternative mechan
that maps the temporal information to the strength of s
apses in a network through spike-timing-dependent plasti
~STDP!. Similar mechanisms have been suggested for p
dictive activity and direction selectivity in the visual syste
@26# and learning in the hippocampus@23,24,27# as well as
prediction in hippocampal place fields and route learning
rats@28–30#. In contrast to these earlier works, we focus
questions of learning of several distinct input sequence
one system and a sparse coding scheme. This learning c
bility is necessary in order to process the identity-tempo
code believed to be generated by winnerless competitio
sensory systems@7,31#.

Synaptic plasticity in the connections among neurons
lows networks to alter the details of their interaction a
develop memories of previous input signals. The details
the methods by which biological neurons express plasti
at synapses are not fully understood at the biophysical le
but many aspects of the phenomena which occur w
presynaptic and postsynaptic neurons are jointly activa
are now becoming clear. First of all, it seems well esta
lished that activity at both the presynaptic and the posts
©2003 The American Physical Society08-1
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aptic parts of a neural junction is required for the synap
strength to change. Arrival of a presynaptic action poten
will induce, through normal neurotransmitter release and
ception by postsynaptic receptors, a postsynaptic elect
action which generally leads to no change in the coupl
strength at that synapse. Depolarization of the postsyna
cell by various meanscoupled witharrival of a presynaptic
action potential can lead to changes in synaptic strength
variety of experimental protocols. It is quite important th
changes in the synaptic strength, which we denote in te
of a conductivity changeDg can be either positive, calle
potentiation, or negative, called depression. When the
pression ofDg is long lasting, several hours or even mu
longer after induction, increases ing are called long term
potentiation or LTP, and decreases ing are called long term
depression or LTD. Good reviews of the current situation
found in Refs.@32–34#.

LTP and LTD can be induced by~1! depolarizing the
postsynaptic cell to a fixed membrane voltage and presen
presynaptic spiking activity at various frequencies, by~2!
inducing slow~LTD! or rapid~LTP! release of Ca21 @35#, or
by ~3! activating the presynaptic terminal a few tens of m
liseconds before activating the postsynaptic cell, leading
LTP, or presenting the activation in the other order, leading
LTD @36,37#.

In this paper we study numerically a network compos
of integrate-and-fire neurons which are densely coupled w
synaptic interactions whose maximal conductances are
mitted to change, in accordance with the observations
closely spaced spike arrival times, to the presynaptic
postsynaptic junctions of the synapse.

The response of a learning synapse to the arrival o
presynaptic spike attpre and a postsynaptic spike attpost is a
function only of Dt5tpost2tpre and for Dt.0, Dg(Dt) is
positive ~LTP!, and forDt,0, Dg(Dt) is negative~LTD!.

Dg~Dt !5A1

Dt

t1
e2Dt/t1 for Dt.0,

Dg~Dt !5A2

Dt

t2
eDt/t2 for Dt,0, ~1!

whereA1 , A2 , t1 , andt2 are positive constants~see Fig.
1!. Synaptic plasticity of this type is often referred to
spike-timing-dependent plasticity. For many mammalianin

FIG. 1. Spike-timing-dependent plasticity learning rule.Dg
5A1Dt/t1e2Dt/t1 for Dt.0 and Dg5A2Dt/t2eDt/t2 for Dt
,0, A1 , A2.0. This form of the learning rule was directly in
ferred from experimental data@37#.
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vitro or cultured preparations, the characteristic LTD timet2

is about two or three times longer than the characteristic L
time t1 .

Here we inquire how a network composed of famili
integrate-and-fire neurons can develop preferred spatial
terns of connectivity when interacting through synapses
update their strength according to the STDP learning rule
given. This rule is a simplification, which applies to our se
ting of spiking neurons, of more general models@38–44#
that indicate howDg(Dt) behaves under stimulus of arb
trary presynaptic and postsynaptic wave forms.

The transformation of temporal information into synap
strength through STDP maps a temporal sequence of ex
tions of neurons to a chain of stronger or weaker synap
among these neurons. If the synapses are excitator
strengthened chain of synapses facilitates subsequent ex
tions of the same temporal pattern up to a point where a
vation of a few neurons from the temporal sequence allo
the system to complete the remaining sequence. The tem
ral sequence thus has been learned by the system. We
onstrate this type of sequence learning in a computer si
lation of a system with integrate-and-fire neurons and R
type synapses, and investigate the reliability of learning,
storage capacity in terms of the number of stored sequen
the scaling of both with system size and sequence length,
the robustness against different types of noise.

II. MODEL SYSTEM

A. Components and connections

To explore the learning principle, we simulated a netwo
with the topology shown in Fig. 2. In this network,n

FIG. 2. Morphology of the model system. The ovals are artific
input neurons producing rectangular spikes of 3 ms duration
specified times. Each is connected by a nonplastic excitatory
apse to one of the neurons in the main ‘‘cortex’’~dotted lines!. The
full circles depict the integrate-and-fire neurons of the main cort
They are connected all-to-all by spike-timing-dependent-plasti
synapses shown as solid gray lines. The big full circle on the ri
depicts a neuron with slow Calcium dynamics which inhibits
neurons in the cortex through the nonplastic synapses show
dashed lines.
8-2
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integrate-and-fire neurons are connected all-to-all while e
neuron also receives input from one ‘‘input neuron’’~filled
ovals in Fig. 2!.

The input neurons generate rectangular spikes of 3
duration at times determined by externally chosen input
quences. Each of these spikes is sufficient to trigger exa
one spike in the receiving neuron~see Fig. 3!. The input
sequences are chosen such that only one input neuron s
at any given time and the time between input spikes w
fixed in the normal test setup. In Sec. IV these input neur
are replaced by Poisson neurons with random spike time

The membrane voltage of the integrate-and-fire neur
used in this study for subthreshold activity is given by

C
dV

dt
52gleak@V~ t !2Vleak#1I synapse~ t !, ~2!

where C50.2 nF, gleak50.3 mS, and Vleak5260 mV.
Whenever membrane potentialV(t) reachesVth5240 mV,
it is set to firing voltageVmax550 mV, kept at that voltage
for tfire52 ms and then released into the normal integrat
state. The neuron is subsequently refractory fort refract
540 ms before another firing event is allowed. During t
refractory period the neurons integrate normally but the tr
sition of the firing threshold has no effect. In the impleme
tation of integrate-and-fire neurons used in this work,
crossing of the firing threshold from below is necessary
elicit a spike in a super-threshold neuron after the refract
period. See Fig. 3, middle panel, for typical spike forms.

A neuron connected to all neurons in the network~large
filled circle in Fig. 2! provides global inhibition wheneve
the activity in the network exceeds a certain threshold. T

FIG. 3. Typical piece of a training session. The rectangu
spikes in the upper panel are the input signal spaced by 10 m
this example. The traces in the middle panel are the integrate-
fire memory neurons. The slow spike train in the bottom pa
belongs to the globally inhibitory neuron. Note the instantane
onset of the spikes in the integrate-and-fire neurons and how
inhibitory neuron segments the input into pieces of six spikes e
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inhibitory neuron is an integrate-and-fire neuron governed
Eq. ~2! with C51.0 nF, gleak50.01mS, Vleak5260 mV,
Vth5240 mV, Vmax550, andtfire55 ms. In contrast to the
memory neurons this neuron is reset to its resting poten
Vleak after each firing. Then the membrane potential is fix
to Vleak for t refract510 ms until normal integration resume
The inhibitory neuron was implemented as a resett
integrate-and-fire neuron because it has a very weak
current allowing integration over long time windows. Th
weak leak current would cause very unnatural broad sp
in a nonresetting neuron. A typical voltage trace is shown
the lowest panel of Fig. 3.

Our model of the synapses comes from Rall@45,46# and
now is a standard model for simplified synaptic dynam
@47#. In particular, we use

I synapse52gsyng~ t !@Vpost~ t !2Vsyn#, ~3!

whereg(t) satisfies

d f~ t !

dt
5

1

tsyn
@Q„Vpre~ t !2Vth…2 f ~ t !#,

dg~ t !

dt
5

1

tsyn
@ f ~ t !2g~ t !#, ~4!

and Vsyn50 mV, Vth5220 mV, tsyn515 ms, Vpre(t) and
Vpost(t) are the pre and postsynaptic membrane potenti
and gsyn is the strength of the synapse.Q(u)50,u<0 and
Q(u)51,u.0 is the usual Heaviside function. Typical exc
tatory postsynaptic potentials~EPSPs! generated by these
synapses can be seen in the middle panel of Fig. 3.

The synaptic strength of the internal synapses is adju
according to the synaptic plasticity rule shown in in Fig.
whenever a spike in their presynaptic and postsynaptic n
ron occurs. In itself, this rule may lead to ‘‘run-away’’ be
havior of the synaptic strengths. While this may be avoid
in the dynamical model of synaptic plasticity@44#, we need
to address this within the simpler model used here. We do
by two approaches:

~1! We add a long term, slow decay to the synaptic pl
ticity which would, all other factors being absent, bring
back to a nominal allowed level a long time after alterati
by our rule. This we implement with

dgraw

dt
52

1

tg
@graw~ t !2g0,raw#, ~5!

where g0,raw is the initial value of the unmodified synaps
strength. So, after potentiation or depression according to
synaptic plasticity rule, the synaptic strength is allowed
slowly decay back to its original value. The time scale of th
exponential decay is set bytg5200 s.

~2! graw is an intermediate variable which is then tran
lated into synaptic strengthgsyn via a sigmoid saturation rule

gsyn5gmax

1

2
@ tanh„gslope~graw2g1/2!…11#, ~6!
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wheregmax is the largest allowed value for the synaptic co
ductivity, andg1/2 sets the threshold where saturation to t
value is implemented. All data shown in this work was o
tained with gmax52.8 mS, g1/251/2gmax, and gslope
51/g1/2. In addition, the globally inhibitory neuron tends
curb the tendency of the network to saturate its syna
strengths.

These features of our model reflect our lack of knowled
of the biophysical factors setting the synaptic strength, in
first place, and our equivalent lack of knowledge of ho
these factors bound the eventual rise or fall of synap
strength. Our assumption in using these rules is that the
tual mechanisms, while surely more complicated in det
will provide the same effective bounding feature.

The complete system is realized in C11 using an order
6~5! variable time step Runge-Kutta algorithm@48#. The er-
ror goal per time step was 1027 in all simulations. A run of
100 simulated seconds of a system with 50 neurons ta
about three hours on an Athlon 1.4 GHz processor.

This model system mimics the situation of a highly co
nected piece of cortex receiving input from the neural
riphery. Our input can be interpreted in two ways. It might
a single strong EPSP received from an upstream neu
which is strong enough to trigger a spike. It could also
interpreted as the coincidence of several weaker EPSP
ceived from various presynaptic neurons being sufficien
cause a spike.

B. Operations and activity

To test the ability of this network to store~learn! and
retrieve~remember! temporal-identity patterns, it was traine
with sets of randomly chosen sequences of inputs. Th
sequences were chosen without repetition of neurons wi
the sequence. Note that this implies a minimal time of
order of the length of the sequence between spikes in e
neuron. For this reason, the choice of resetting or nonre
ting neurons is not important as the integration times of
neurons are small compared to the total length of the
quences and the time scale of the global inhibition. O
choice of nonresetting integrate-and-fire neurons was ma
guided by the more natural spike form of the nonresett
variety.

The sequences were presented continuously, with the
neuron of the sequence following the last with the same t
delay as the neurons within the sequence. The global inh
tion of the system partitions this continuous input of spik
into pieces of about 6–8 spikes at a time. Between th
input windows the whole system is inhibited and thus res
This mechanism can be seen in the example training ses
shown in Fig. 3. Note that the details of the global inhibiti
mechanism do not matter as long as the system is efficie
reset after an appropriate amount of activity.

Learning rateA1 and time scale of forgettingtg in the
synaptic plasticity learning rule were chosen such that lea
ing reaches a steady state after a learning time of ab
1600Dt, whereDt is the fixed interspike interval betwee
input activations. For an example of the learning protocol
Fig. 3. In all studies described below,Dt was chosen asDt
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510 ms, 15 ms, or 20 ms. The learning rule has to acco
modate all these input speeds and possibly values in
tween. In particular, we chose hereA150.3 mS, A2

52/3A1 , t1516 ms,t253/2t1 , andtg5200 s.
After the training phase the network was presented w

pieces of the training patterns. We presented all possible
dered pieces of one to four input spikes and recorded
number and identity of spiking neurons in the network
response to this input. Perfect learning of the patterns wo
correspond to obtaining a spike from each of the netw
neurons in a given pattern when presenting a piece of tw
three inputs from that pattern to the input neurons. Furth
more, all other network neurons should remain inactive if
pattern is reproduced exactly.

As a result of incomplete or ineffective learning two typ
of errors can occur.~1! Neurons that should be excited withi
the given pattern do not spike or~2! neurons that are no
supposed to spike do so. Due to overlap of input patterns,
learning efficiency is a function of the number of learn
patterns as well as the size of the network. Therefore, e
mating the expected amount of overlaps in the random
chosen input sequences provides information about the o
mally achievable system performance.

The probability distribution for numberYi jrkn of ordered
j-tuples occurring in at leasti out of r patterns withk neurons
each for a system with a total number ofn neurons can be
calculated in the following way. First consider a given o
dered j-tuple and a given pattern withk neurons. The se-
quence is presented continuously and, therefore, needs
interpreted as cyclically closed. Thus, there arek possibilities
to position thej tuple in the sequence~starting at neuron 1 to
starting at neuronk) and (n2 j )!/ @n2 j 2(k2 j )#! possibili-
ties to choose the remaining neurons in the sequence.
total number of sequences of lengthk is n!/(n2k)!. There-
fore, probabilitypj to have a given orderedj-tuple in a given
pattern withk active neurons is given by

pj5k
~n2 j !!

~n2k!! Y n!

~n2k!!
5k

~n2 j !!

n!
. ~7!

If r sequences of lengthk are chosen independently, th
probability to have any given orderedj-tuple of neurons ini
or more of ther sequences is given by the binomial dist
bution with parametersr andpj ,

pj
i 5(

s5 i

r S r

sD ~pj !
s~12pj !

r 2s. ~8!

In good approximation one can assume the events of
given j-tuple being in i or more sequences and anoth
j-tuple being ini or more sequences to be independent.
this approximation, the probability distribution forYi jrkn is
again a binomial distribution with parametersn!/(n2 j )!
andpj

i ,

P~Yi jrkn5 l !'S n!

~n2 j !!

l
D ~pj

i ! l~12pj
i ! [n!/(n2 j )!] 2 l . ~9!
8-4
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Figure 4 shows a comparison of the expectation value
EY2,2,10,8,n obtained from this approximate distribution com
pared to the relative number of occurrences in 100 000
domly generated sets of ten sequences of length 8. The
of a significant discrepancy demonstrates the precision of
estimate.

The probability distribution for numberXi jrkn of unor-
dered j-tuples occurring in at leasti out of r patterns withk
neurons each for a system with a total number ofn neurons
can be calculated pretty much in the same way. Now, pr
ability p̂ j to have a given unorderedj-tuple in a given pattern
with k active neurons is

p̂ j5S n2 j

k2 j D Y S n

kD . ~10!

Then, probabilityp̂ j
i to have any given unorderedj-tuple of

neurons ini or more ofr independently chosen patterns is t
binomial distribution with parametersr and p̂ j ,

p̂ j
i 5(

s5 i

r S r

sD ~ p̂ j !
s~12 p̂ j !

r 2s. ~11!

Again taking the approximation of assuming independe
for the occurrence of distinct tuples, this leads once mor
a binomial distribution, now with parameters (j

n) and p̂ j
i ,

P~Xi jrkn5 l !'S S n

j D
l
D ~ p̂ j

i ! l~12 p̂ j
i !(

n
j )2 l . ~12!

FIG. 4. Comparison of the expectation values forY2,2,10,8,n

~lower line! and X2,3,10,8,n ~upper line! obtained from Eqs.~9! and
~12! to the normalized number of occurrences of unordered th
tuples~gray dots! and ordered two-tuples~black dots! in more than
two sequences in 100 000 randomly generated sets of ten sequ
of length 8. The inlay shows a closeup of the data on ordered tu
in the region with system size around 50 neurons, which is the
used in most numerical simulations.
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The comparison of expectation valuesEX2,3,10,8,n with nu-
merically observed relative numbers of occurrence in Fig
shows again a perfect match.

The model parameters were chosen such that two to t
spiking predecessors of a given neuron in a trained sequ
are sufficient to excite that neuron. The learning performa
is therefore poor as long as there is a significant amoun
ordered two-tuple overlaps in the patterns. Rule of thu
EY22rkn,0.5 for the expectation value ofYi jrkn provides an
estimate for numberr of pattern of lengthk that can be
successfully stored in a system ofn neurons. Another esti-
mate for the number of learnable sequences is provided
rule of thumbEX23rkn,0.5, i.e., the overlaps in input se
quences should have negligible impact on the learning
there is no significant amount ofunorderedthree-tuples oc-
curring in more than one pattern.

Typically, capacity estimates are given in the limit of sy
tem sizen tending to infinity. As shown in the Appendix, th
leading term of the Taylor expansion ofpj

i with respect topj

aroundpj50 is

pj
i 5S r

i D ~pj !
i1O„~pj !

i 11
… ~13!

such that asymptotic equation

lim
n→`

EYi jrkn5
!

e ~14!

leads to

lim
n→`

n!

~n2 j !! S r

i D S k
~n2 j !!

n! D i

5e ~15!

⇔ lim
n→`

r i

i !
kin2 j ( i 21)5e ~16!

such that capacityr (n,k,e) is asymptotically

r ~n,k,e!5
1

k
~ i ! e!1/inj ( i 21)/i . ~17!

In the same way,

lim
n→`

EXi jrkn5
!

e ~18!

leads to

r̂ ~n,k,e!5
~k2 j !!

k!
~ i ! j ! e!1/inj ( i 21)/i . ~19!

The dashed lines in Fig. 5 are some examples for the
rule of thumbEY22rkn5 1

2 and the thin solid lines are th

corresponding values ofr (n,k, 1
2 ). The estimates based o

rule EX23rkn5 1
2 are shown as dash-dotted lines in Fig. 5 a

the corresponding values of the asymptotically corr

r̂ (n,k, 1
2 ) are again shown as thin solid lines. The corresp

e-

ces
es
e

8-5



ca
cit

e
a
u
t
ed
e

ce
yn
fo

, t
sy
b
in
i

pl
y
e
gt
s

u

g

d
9.

all,
ed
ow-
the
7

e
se-

nd-
eir
eir

x-
ch
dies
ct
der
of

cro-
in

on
how-
ur at
as a
are

epro-
cti-

ys
it

to

ly

i-
rn.
tedly
ec-

d the
ee,

ttern

NOWOTNY, RABINOVICH, AND ABARBANEL PHYSICAL REVIEW E 68, 011908 ~2003!
dence between the exact evaluation of the
pacity estimators and the asymptotically correct capa
functions r (n,k,e) and r̂ (n,k,e) is noteworthy. Relative
capacities r 8(k)ªkr(n,k,e)/nj ( i 21)/i5( i ! e)1/i and r̂ 8(k)
ªkr̂(n,k,e)/nj ( i 21)/i5@(k2 j )!/(k21)!#( i ! j ! e)1/i behave
quite differently. Whereas the former is constant with resp
to k the latter is falling ink. So, depending on whether
system is more sensitive to ordered tuple overlaps or to
ordered tuple overlaps, the relative capacity is constan
falling in k. In particular, for systems sensitive to unorder
tuple overlaps, it will be beneficial to store many short s
quences instead of a few long ones.

III. RESULTS

The synaptic plasticity allows one to store time sequen
of excitation of neurons into patterns of strengthened s
apses as intended. A simple example is shown in Fig. 6
one input pattern. For randomly chosen input sequences
patterns are structured in the same way but are not so ea
detect with the human eye. During training the synapses
tween consecutively active neurons are strengthened if po
ing in the direction of the activation order or weakened
connecting the neurons in the wrong direction. An exam
of the development of the average synaptic strength of s
apses between neurons of one out of five trained sequenc
shown in Fig. 7. Note that the time course and final stren
of the synapses depends on the speed with which the
quences are entrained due to the nonconstant learning c
~1!.

The ability to store more than one pattern was tested
various setups. We mainly varied choice, number, and len
of input sequences and the speed of entrainment.

FIG. 5. Estimate for the maximum storage capacity of the s
tem. The dashed lines divide the plane into two regions w
EY2,2,r ,k,50.0.5 ~above! andEY2,2,r ,k,50,0.5 ~below! for k58 ~top-
most line!, 10 ~middle line!, and 12~lowest line!, respectively. The
thin solid lines are the corresponding estimates for the asymp

cally correct valuesr (50,k, 1
2 ). The dash-dotted lines analogous

mark the boundaries between regions withEX2,3,r ,k,50.0.5 ~above!
andEX2,3,r ,k,50,0.5 ~below!. Again the thin lines are the asymptot

cally correct estimatesr̂ (50,k, 1
2 )
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A typical example for a network of 50 neurons traine
with five sequences of length 8 is shown in Figs. 8 and
There are several important features to point out. First of
the recall never comprises all eight neurons of the train
sequence but only up to seven active neurons. This is, h
ever, not a universal feature but rather a characteristic of
global inhibition circuit shutting down the system after ca.
spike occurrences~see Fig. 8!. Furthermore, note that th
recall of the sequences speeds up toward the end of the
quence. This is partly due to the fact that the integrate-a
fire neurons used here do not have a finite rise time for th
spikes, which allows them to instantaneously affect th
postsynaptic neurons.

In a network with more realistic neurons one would e
pect that there is a lower limit on the speed with whi
sequences can be recalled in the system. Preliminary stu
with realistic Hodgkin-Huxley-type neurons show this effe
@49#. It has clear advantages for maintaining the correct or
of recall in the system. The microscopic internal dynamics
the neurons thus seems to be non-negligible for the ma
scopic performance of the system. This will be discussed
more detail in forthcoming work.

The quality of recall of sequences depends very much
the sequence and the piece presented as a cue. This is,
ever, also no surprise because sequence overlaps occ
certain neurons in the sequence and if these are used
cue, the performance is worse than when other neurons
used. In Fig. 9 one can see how some sequences are r
duced very well and are error-free while others lead to a
vation of quite a few incorrect neurons.

-
h

ti-

FIG. 6. Simple example of a learned identity-temporal patte
The neurons at the corners of the octagon have been repea
excited in clockwise order. The width and grayscale of the conn
tions encodes the strength of the corresponding synapse an
small circle at the end shows its direction. As one can clearly s
the temporal pattern is transformed into an ordered spatial pa
by synaptic plasticity.
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SPATIAL REPRESENTATION OF TEMPORAL . . . PHYSICAL REVIEW E 68, 011908 ~2003!
To test for the capacity of the system systematically,
trained a network of 50 neurons with two up to ten sequen
of length 8. For each number of sequences five indepen
sets of randomly chosen sequences were tested. Figur
shows the average response of the trained systems to p
of two inputs taken from the learned sequences. The a
ages are over all possible subsequences and all five i
sequence sets for each data point. This experiment was
with three different input speeds, i.e., the input was presen
with fixed interspike intervals of lengthDt510 ms, 15 ms,
and 20 ms. As one can see in Fig. 10 the performance
matically decreases for the slowest entrainment speed.
is due to the fact that the fixed width of the learning windo
in Eq. ~1! leads to weaker synapses for all the synapse
this case as spikes are separated further in time~see last row
of Fig. 7!. The minimum and maximum possible speed of t
entrainment are thus directly determined by the learning w
dow. If one chooses a larger learning window the slow

FIG. 7. Development of synaptic strength during training. T
network of 50 neurons was trained with five sequences of leng
in sequential order. The topmost panel shows the data for seque
entrained with interspike intervalDt510 ms, the middle withDt
515 ms, and the lowest withDt520 ms. Each sequence was pr
sented for 80Dt at a time. The data shown are average syna
strengths of synapses between the neurons of one of the tra
sequences. The topmost points are the average strengths of al
apses between the neurons and their direct successors in th
quence, the middle are the corresponding strengths of synapse
tween neurons who are next nearest neighbors in the sequ
under consideration, and the lower points correspond to strengt
synapses between neurons with distance 3 in the sequence
lowest data points are the strengths between the neurons o
sequence as described above butagainstthe order of activation in
the trained sequence. The sharp rises in synaptic strength c
spond to training of the particular sequence shown here and
falling flanks correspond to the decay while other patterns
trained.
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sequences could be entrained as well. However, this wo
also lead to decreased performance for faster sequence

To test for the dependence of learning success on
length of presented sequences we entrained a 50 neuron
tem with sets of five sequences of length 6 to 9. Figure
shows the performance of the system. On first sight it
surprising that the system performs worse for shorter
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FIG. 8. Typical recall episodes. The system of 50 neurons w
trained with two ~left panel! or five ~right panel! sequences for
1600Dt per sequence, whereDt510 ms. It then receives a cue o
two spikes from one of the trained sequences and autonomo
completes the sequence until stopped by the globally inhibit
neuron. Note that although the recall of the identity and order of
neurons is perfect in both cases, the exact timing is lost. In gen
one sees a tendency of speedup to the end of the recalled sequ
This can have the effect of destroying the correct order of reca
the later sequence if the global inhibition is not present.

FIG. 9. Examples of learning in a 50 neuron network af
1600Dt sequential training with five input sequences of length
The left and the right panels show results for two independe
chosen sets of five input sequences labeled with numbers 0 to
each set. The filled symbols show the average number of spi
neurons within a tested sequence and the open symbols show
neously spiking neurons. The test cue were fractions of lengt
from the trained sequences. The circles were obtained with a tr
ing speed ofDt510 ms, the squares withDt515 ms, and the tri-
angles withDt520 ms. Note that the results depend on the str
ture of the input set. Whereas in the left case all sequences
some overlap, in the right case sequence 0 and sequence 3
pretty much disjoint from the others.
8-7
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NOWOTNY, RABINOVICH, AND ABARBANEL PHYSICAL REVIEW E 68, 011908 ~2003!
quences. Naively, one would expect a better performa
because overlaps are less likely. Indeed, one can really
that the number of erroneous spikes is smaller. On the o
hand, the number of correct spikes is also considera
smaller. This is due to the fact that the spikes precedin
given spike in a sequence are also succeeding it becau
the periodic presentation of the sequences~see, e.g., Fig. 3!.
Synapses between the corresponding neurons are ther
enhanced as well as depressed. For shorter sequences th
presentation of the sequence is closer and therefore the
pression effect stronger, leading to lesser overall syna
strength~cf. Fig. 12!. This creates the fewer retrieved spik
for shorter sequences in Fig. 11. To some extent this ca
seen as an artifact because longer learning time or slig
larger learning incrementsA1 could diminish this effect. On
the other hand, this might have negative effects on the
formance of the system in other parameter regions.

IV. ROBUSTNESS

Biological neural systems are subject to various exter
and internal noise sources. Starting from internal therm
noise within the system, this ranges over noisy or unrelia
input and influences from other parts of the organism up
external electromagnetic fields. To test the effect of noise
the learning success of our model systems we focused
two types of noise. We implemented a Gaussian white no
in the membrane potential of the integrate-and-fire neur
and we implemented unreliable input.

The internal white noise was added to the membrane
tential of each neuron independently. It is fully characteriz

FIG. 10. Scaling of storage quality with the number of inp
sequences. A system with 50 neurons was trained with a var
number of input sequences of length 8. The figure shows the
sponse after a total of 1600Dt training for each input sequence. Th
filled symbols show the average number of responding neu
within a tested sequence and the open symbols show the numb
incorrectly responding neurons. The test cues were pieces of
inputs from the trained sequences. The circles were obtained
sequences trained with interspike intervalsDt510 ms, the squares
with Dt515 ms, and the triangles withDt520 ms. All data points
are averages of trials with five independently chosen sets of in
sequences.
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by its mean 0 mV and its variance for which several valu
between 0.2 mV and 1.0 mV were tested.

To simulate unreliable input we implemented Poisson
put neurons. These neurons produce rectangular spike
width tspike53 ms as before but the time of spiking is st

FIG. 11. Scaling of storage quality with the length of inp
sequences. A system with 50 neurons was trained with sets of
input sequences of different lengths. The figure shows the resp
after a total of 16 s training for each input sequence. The fil
symbols show the average number of responding neurons with
tested sequence and the open symbols the number of incorr
responding neurons. The test cues were pieces of two inputs
the trained sequences. The circles were obtained with sequenc
length 6, the squares with length 7, the triangles with length 8,
the diamonds with length 9. All data points are averages of tr
with five independently chosen sets of input sequences.

FIG. 12. Development of synaptic strength during training o
sequence of length 6 with speedDt510 ms. The network of 50
neurons was trained with five sequences of length 6 in seque
order. Each sequence was presented for 80Dt at a time. The data
shown are average synaptic strengths of synapses between the
rons of one of the trained sequences. The topmost points are
average strengths of all synapses between the neurons and
direct successors in the sequence, the middle are the correspo
strengths of synapses between neurons that are next nearest n
bors in the sequence under consideration, and the lower points
respond to strengths of synapses between neurons with distan
in the sequence. Note how the synaptic strength for these syna
is suppressed because a spike, being the third predecessor of a
spike, is also the third successor of this spike due to cyclic train
The lowest data points are the strengths between the neurons o
sequence as described above butagainstthe order of activation in
the trained sequence.
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SPATIAL REPRESENTATION OF TEMPORAL . . . PHYSICAL REVIEW E 68, 011908 ~2003!
chastic. The spike times are determined by the Poisson
tribution:

P~nspike5k!5e2lt
~lt !k

k!
, ~20!

wherenspike is the number of spikes occurring in an interv
of lengtht and parameterl is the mean firing rate. For sma
t this can be approximated byP(nspike51)5lt, P(nspike
50)512lt, and P(nspike5k)50 for k.1. This is the
probability distribution we use to decide whether a neu
fires within a time step of the Runge-Kutta algorithm use
After firing, the neurons are refractory fort refract510 ms.
The training protocol is that the mean firing rate of the fi
neurons is switched from 0 to some activity levellon for
2Dt, the next neuron is switched on afterDt for also 2Dt,
and so on. Different reliability of the input can be adjust
by parameterlon.

Figures 13 and 14 show the impact of the two types
noise on the learning performance. Figure 13 shows the
fect of additive white noise at the membrane potential in
learning stage and in both learning and recalling. As m
tioned, the standard deviation of the noise was chosen
tween 0.3 mV and 1.5 mV. The system seems to be mor
less unaffected by noise of this magnitude. As expected,
learning is even less sensitive to noise than the recalling
to the fact that the effect of the temporally uncorrelated no
on the synaptic strength is averaged out over time.

Figure 14 shows the learning success if the input neur
fire stochastically during learning only and during learni
and recall, as described above. Parameterlon was varied
from 60 Hz to 160 Hz. The stochastic firing of the inp
neurons seem to only affect the overall number of spik
i.e., correct spikes as well as incorrect ones but not th

FIG. 13. Impact of Gaussian white noise in the membrane
tential. The data points are the number of spiking neurons wi
tested sequences after 2400Dt training atDt510 ms~full symbols!
and the number of erroneously spiking neurons~open symbols!.
The small symbols were obtained when the noise was only pre
during learning and the large ones when noise was always pre
The circles correspond to a cue of two inputs in testing and
squares to a cue of three inputs.
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ratio. This indicates that mainly, missing input spikes duri
the training and especially during testing are responsible
the decreased spikes in the response. It is to be expected
longer training can diminish these effects even more. Like
the case of noise in the membrane potential, the learn
stage is not affected as much by the noisy input as the re
Again the same argument applies; the effects of the stoc
ticity of the input spikes is averaged out over time during t
multiple repetitions in the training phase.

V. DISCUSSION

It has been demonstrated that STDP allows the trans
mation of temporal information into spatial information, pr
viding an efficient mechanism for storing temporal s
quences which does not require a sophisticated netw
topology. It is, however, not obvious how toquantify the
storage capacity of the system from the observed recall
formance for different numbers of stored sequences. Tak
the heuristic rule that storage is successful if there are
average one or fewer incorrect spikes in recall, the capa
of a system of 50 neurons is about 5–6 sequences~see Fig.
10!. The capacity estimates forn550 and k58 are

r (8,50,12 )'6.3 andr̂ (8,50,12 )'2.6. The storage capacity o
the system therefore seems to be mainly limited by the
tistical properties of the input, i.e., the overlap probabiliti
for randomly chosen input sequences. The biologically fou
STDP learning rule obviously does not imply severe rest
tions on the ability to learn sequences but, on the contr
seems to be very well suited for this task. There are indi
tions that the learning mechanism is even more reliable w
biologically more realistic conductance based model neur

-
n

nt
nt.
e

FIG. 14. Impact of noisy input on the learning performance. T
input sequences were provided by stochastic Poisson neuron
described in the text. The data points are the number of spik
neurons within tested sequences after 2400Dt training at Dt
510 ms~full symbols! and the number of erroneously spiking ne
rons ~open symbols!. The small symbols were obtained when th
stochasticity of the input was only present during learning and
large ones when input was always stochastic. The circles co
spond to a cue of two inputs in testing and the squares to a cu
three inputs.
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NOWOTNY, RABINOVICH, AND ABARBANEL PHYSICAL REVIEW E 68, 011908 ~2003!
that have nontrivial intrinsic dynamics which to some exte
prevents the speedup in recall, already discussed above

The successful storage of arbitrary input sequences, h
ever, crucially depends on the existence of the correspon
synapses, making the weak all-to-all connections in the
vestigated system a necessary requirement. For real bio
cal systems, the global all-to-all connections are an appr
mation of the real connectivity and divergence a
redundancy of the input. If the density of connections and
number of neurons each input excites is high enough, p
of connected neurons being excited by successive inputs
pear on a statistical basis. Preliminary results for the kno
connectivity in the olfactory system of locust support th
idea. It will be discussed more thoroughly in forthcomin
work @50#.

The global inhibition is not so crucial in this study. It ca
be realized even more realistically by local interneurons
tivated by the average activity of the neighboring princip
neurons. As the role of the inhibition in this system is just
control the activity of a highly excitable network and not
organize precise synchronous firing or any other soph
cated function, it does not really matter how well coord
nated this inhibition is throughout the system. Especially
the excitatory connections cease to be all-to-all in a m
realistic setup the inhibitory circuit can easily be local
well. On the other hand the example of the locust, wher
strong, periodic, global feed-forward inhibition onto th
Mushroom Body is provided through synchronized Late
Horn interneurons, shows that global inhibition is not nec
sarily unrealistic@51#.

The realistic implementation of saturation of synap
strength for additive learning rules is another importa
topic. For the system investigated here, we implemente
combination of two mechanisms. On the one hand the s
aptic strength was directly bounded by use of the sigm
filtering function applied to the bare synaptic strength sub
to the additive learning rule, a technique commonly used
biologists. On the other hand the steady decay of syna
strength and the continuous stimulation of the network by
inputs lead to a dynamical steady state, thereby bounding
synaptic strength dynamically.
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Whereas the direct bound through a sigmoid filteri
function might capture some aspects of the behavior of
synapses, the decay of synaptic strength necessary to ac
a realistic dynamical steady state is clearly too fast to
realistic. The system forgets much too fast if it is not co
tinuously stimulated with appropriate input.

Alternative solutions to the saturation problem inclu
competition based mechanisms suggested by recent find
of interactions of various kinds between neighboring sy
apses on a dendritic tree@52# and learning rules that depen
on the synaptic strength itself, e.g., multiplicative learni
rules.

The system is reasonably robust against noise. It is n
worthy that it is not very sensitive to internal high-frequen
noise. In the range of noise applied in our trials, the rec
barely depended on the level of noise~see Fig. 13!. Whether
this is an effect of the integrate-and-fire neuron model u
here is beyond the scope of this work. The tolerance to b
logically more relevant noise in the spike timing of the inp
is also rather impressive, taking into account thatlon
560 Hz corresponds to a total firing probability of only 36%
for each of the input neurons within their activity window o
20 ms. Nevertheless, the system still was able to store
least parts of the presented sequences at this high noise l
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APPENDIX: TAYLOR EXPANSION OF pi
j

We first need to prove identity
dn

dxn S r

sD xs~12x!r 2s5 (
k5max$n1s2r ,0%

min$s,n% S r

sD s!

~s2k!!

~r 2s!!

~r 2s2~n2k!!! S n

kD ~21!n2kxs2k~12x!r 2s2(n2k). ~A1!

The proof is by induction. Letn50. Then the equation reduces to

S r

sD xs~12x!r 2s5S r

sD s!

s!

~r 2s!!

~r 2s!! S 0

0D ~21!0xs~12x!r 2s, ~A2!

which is clearly true. Assuming the validity of Eq.~A1! for n we can calculate
8-10
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dn11

dxn11 S r

sD xs~12x!r 2s5
d

dx S (
k5max$n1s2r ,0%

min$s,n% S r

sD s!

(s2k)!

(r 2s)!

(r 2s2(n2k))! S n

kD (21)n2kxs2k(12x) r 2s2(n2k)D ~A3!

5 (
k5max$n1s2r ,0%

min$s,n% S r

sD s!

~s2k21!!

~r 2s!!

~r 2s2~n2k!!! S n

kD ~21!n2kxs2k21~12x!r 2s2(n2k) ~A4!

1 (
k5max$n1s2r ,0%

min$s,n% S r

sD s!

~s2k!!

~r 2s!!

~r 2s2~n112k!!! S n

kD ~21!n112kxs2k~12x!r 2s2(n112k). ~A5!

Shifting the index in the first sum by one, using the well known identity (k
n)1(k21

n )5( k
n11) and obvious identities such a

15( 0
n11) one obtains Eq.~A1! for n11, which completes the proof.

The Taylor expansion forpj
i is then straightforward:

pj
i 512(

s50

i 21 S r

sD pj
s~12pj !

r 2s ~A6!

52 (
n51

`

(
s50

i 21 S (
k5max$n1s2r ,0%

min$s,n% S r

sD s!

~s2k!!

~r 2s!!

~r 2s2~n2k!!! S n

kD ~21!n2kpj
s2k~12pj !

r 2s2(n2k)DU
pj 50

~pj !
n

n!
. ~A7!
er
For all k,s the nth derivative contains a nonzero pow
of pj and is thus50 at pj50. Furthermore, ifs.n then all
k are less thens and therefore, the whole sum overk is
empty. We end up with

pj
i 52 (

n51

`

(
s50

min$ i 21,n% S r

sD s! ~r 2s!!

~r 2n!! S n

sD ~21!n2s
~pj !

n

n!
~A8!

52 (
n51

`

(
s50

min$ i 21,n% S r

nD S n

sD ~21!n2s~pj !
n. ~A9!
re

rn

d

-

01190
For anyn< i 21 the inner sum is

S r

nD ~pj !
n(

s50

n S n

sD ~21!n2s1s5S r

nD ~pj !
n~121!n50.

~A10!

Therefore, the leading term of the Taylor expansion ofpj
i is

pj
i 5S r

i D ~pj !
i1O„~pj !

i 11
…. ~A11!
g
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